шjec
cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics - FP2 0978/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

SUMMER 2016 MARK SCHEME

\begin{tabular}{|c|c|c|c|}
\hline Ques \& Solution \& Mark \& Notes \\
\hline 1 \& \[
\begin{aligned}
\& \text { Putting } u=x^{2}, \\
\& \begin{aligned}
\mathrm{d} u \& =2 x \mathrm{~d} x,[0, \sqrt{2}] \text { becomes [0,2] } \\
\mathrm{I} \& =\frac{1}{2} \int_{0}^{2} \frac{\mathrm{~d} u}{\sqrt{\left(16-u^{2}\right)}} \\
\& =\frac{1}{2}\left[\sin ^{-1}\left(\frac{u}{4}\right)\right]_{0}^{2} \\
\& =\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right) \\
\& =\frac{\pi}{12}
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
B1B1 \\
M1 \\
A1 \\
A1 \\
A1
\end{tabular} \& Valid attempt to substitute \\
\hline \begin{tabular}{l}
2(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& (3-i)^{2}=9-6 i-1=8-6 i \\
\& (3-i)^{4}=(8-6 i)^{2}=64-96 i-36=28-96 i
\end{aligned}
\] \\
The \(4^{\text {th }}\) roots are \(3-\mathrm{i}\) and \(-3+\mathrm{i}\) and \(1+3 \mathrm{i},-1-3 \mathrm{i}\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { B1B1 }
\end{gathered}
\] \& \begin{tabular}{l}
Convincing \\
Must start with \(3-\mathrm{i}\) and rotate
\end{tabular} \\
\hline 3(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
\hline \cos 4 \theta+\mathrm{i} \sin 4 \theta= & (\cos \theta+\mathrm{i} \sin \theta)^{4} \\
& =4 \mathrm{i} \cos ^{3} \theta \sin \theta-4 \mathrm{i} \cos \theta \sin ^{3} \theta \\
& \quad \text { real terms } \\
\sin 4 \theta= & 4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta \\
\frac{\sin 4 \theta}{\sin \theta}= & 4 \cos \theta\left(1-\sin ^{2} \theta-\sin ^{2} \theta\right) \\
= & 4 \cos \theta\left(1-2 \sin ^{2} \theta\right)
\end{aligned}
$$

EITHER
$$
\begin{aligned}
\int_{\pi / 6}^{\pi / 4} \frac{\sin 4 \theta}{\sin \theta} \mathrm{~d} \theta & =4 \int_{\pi / 6}^{\pi / 4} \cos \theta \cos 2 \theta \mathrm{~d} \theta \\
& =2 \int_{\pi / 6}^{\pi / 4}[\cos \theta+\cos 3 \theta] \mathrm{d} \theta \\
& =2\left[\sin \theta+\frac{\sin 3 \theta}{3}\right]_{\pi / 6}^{\pi / 4} \\
& =0.219
\end{aligned}
$$

OR
$$
\begin{aligned}
\int_{\pi / 6}^{\pi / 4} \frac{\sin 4 \theta}{\sin \theta} \mathrm{~d} \theta & =4 \int_{\pi / 6}^{\pi / 4}\left(1-2 \sin ^{2} \theta\right) \mathrm{d} \sin \theta \\
& =4\left[\sin \theta-\frac{2}{3} \sin ^{3} \theta\right]_{\pi / 6}^{\pi / 4} \\
& =0.219
\end{aligned}
$$

 \& \&

This line must be seen

This line must be seen
\end{tabular}

\hline
\end{tabular}

Ques	Solution	Mark	Notes
7(a)	$x=1 \quad$ cao		Penalise - 1for extra asymptotes
	$y=1$ cao	B1	
	$f(0)=8$ giving the point $(0,8) \quad$ cao $f(x)=0 \Rightarrow x=2$ giving the point $(2,0)$ cao	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(c)	$f^{\prime}(x)=\frac{3 x^{2}\left(x^{3}-1\right)-3 x^{2}\left(x^{3}-8\right)}{\left(x^{3}-1\right)^{2}}\left(=\frac{21 x^{2}}{\left(x^{3}-1\right)^{2}}\right)$	M1A1	
	$f^{\prime}(x)>0$ on either side of the stationary point. It is a point of inflection.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(d)		G1	
	 0 $1 / \mathrm{cao}$	$\begin{aligned} & \text { G1 } \\ & \text { G1 } \end{aligned}$	LH branch approach to asymptotes Stationary point of inflection
(e)(i)	$\begin{aligned} & f(-2)=16 / 9, \quad f(2)=0 \\ & f(S)=(-\infty, 0] \cup[16 / 9, \infty) \text { cao } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(ii)	$\begin{aligned} & f(x)=-2 \Rightarrow x=\sqrt[3]{10 / 3} \\ & f(x)=2 \Rightarrow x=-\sqrt[3]{6} \\ & f^{-1}(S)=(-\infty,-\sqrt[3]{6}] \cup[\sqrt[3]{10 / 3}, \infty) \quad \text { cao } \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Accept 1.82 for $\sqrt[3]{6}$ and 1.49 for $\sqrt[3]{10 / 3}$

